您现在的位置:首页 >> 技术文章 >> MATLAB技术 >> 内容

MATLAB代做|FPGA代做|python代做-自适应粒子群算法matlab代码

时间:2020-10-21 21:27:44 点击:

  核心提示:MATLAB代做|FPGA代做|python代做-自适应粒子群算法matlab代码...
%% 清空环境
clc
clear all

%% 参数初始化
%粒子群算法中的两个参数
c1 = 2;
c2 = 2;
w=0.9;

maxgen=500;   % 进化次数
sizepop=30;   %种群规模
n=30;
Vmax=4;
Vmin=-4;
sigmax=1;
sigmin=0.1;
sig=1;

popmax=10;
popmin=-10;

range=20;
init=-10;
factor=0;
ind=0;
%% 产生初始粒子和速度
for i=1:sizepop
    %随机产生一个种群
    pop(i,:)=init+range*rand(1,n);    %初始种群
    V(i,:)=rand(1,n);  %初始化速度
    %计算适应度
    fitness(i)=Rastrigrin(pop(i,:));   %染色体的适应度
end

%% 个体极值和群体极值
[bestfitness bestindex]=min(fitness);
zbest=pop(bestindex,:);   %全局最佳
gbest=pop;    %个体最佳
fitnessgbest=fitness;   %个体最佳适应度值
fitnesszbest=bestfitness;   %全局最佳适应度值

%% 迭代寻优
for i=1:maxgen
    ind_1=ind;
    factor=calfactor(pop,sizepop,zbest);
    if i==1
        ind_1=1;
    end
    ind=fuzzyclassification(factor,ind_1);
    if ind==1
        c1=c1+unifrnd(0.05,0.1);
        c2=c2-unifrnd(0.05,0.1);
    elseif ind==2
        c1=c1+0.5*unifrnd(0.05,0.1);
        c2=c2-0.5*unifrnd(0.05,0.1);
    elseif ind==3
        c1=c1+0.5*unifrnd(0.05,0.1);
        c2=c2+0.5*unifrnd(0.05,0.1);
        p=zbest;
        d=unidrnd(n);
        p(d)=p(d)+(popmax-popmin)*normrnd(0,sig^2);
        p(find(p(:)>popmax))=popmax;
        p(find(p(:)<popmin))=popmin;
        cv=Rastrigrin(p);
        if cv<fitnesszbest
            zbest=p;
        else
            [aa,bb]=max(fitness);
            pop(bb,:)=p;
        end
    else
        c1=c1-unifrnd(0.05,0.1);
        c2=c2+unifrnd(0.05,0.1);
    end
    w=1/(1+1.5*exp(-2.6*factor));
    if c1<1.5
        c1=1.5;
    elseif c1>2.5
        c1=2.5;
    end
    if c2<1.5
        c2=1.5;
    elseif c2>2.5
        c2=2.5;
    end
    crange=c1+c2;
    c1=(c1/crange)*4;
    c2=(c2/crange)*4;
    sig=sigmax-(sigmax-sigmin)*(i/maxgen);
    for j=1:sizepop  
        %速度更新
        V(j,:) = w*V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));
        V(j,find(V(j,:)>Vmax))=Vmax;
        V(j,find(V(j,:)<Vmin))=Vmin;
        
        %种群更新
        pop(j,:)=pop(j,:)+V(j,:);
        pop(j,find(pop(j,:)>popmax))=popmax;
        pop(j,find(pop(j,:)<popmin))=popmin;
              
        %适应度值
        fitness(j)=Rastrigrin(pop(j,:));
        
    end
    
    for j=1:sizepop
        
        %个体最优更新
        if fitness(j) < fitnessgbest(j)
            gbest(j,:) = pop(j,:);
            fitnessgbest(j) = fitness(j);
        end
        
        %群体最优更新
        if fitness(j) < fitnesszbest
            zbest = pop(j,:);
            fitnesszbest = fitness(j);
        end
    end
    yy(i)=fitnesszbest;
    
end
%% 结果分析
figure(1);
plot(yy,'r');
title('最优个体适应度','fontsize',12);
xlabel('进化代数','fontsize',12);ylabel('适应度','fontsize',12);


联系:highspeedlogic

QQ :1224848052

微信:HuangL1121

邮箱:1224848052@qq.com

网站:http://www.mat7lab.com/

网站:http://www.hslogic.com/

微信扫一扫:

作者:自适应粒子群算法 来源:自适应粒子群算法
  • 您是如何找到本站的?
  • 百度搜索
  • Google搜索
  • 查阅资料过程中
  • 论坛发现
  • 百度贴吧发现
  • 朋友介绍
本站最新成功开发工程项目案例
相关文章
  • 没有相关文章
相关评论
发表我的评论
  • 大名:
  • 内容:
  • matlab代做|matlab专业代做|matlab淘宝代做|python人工智能代做|FPGA项目合作|C代做|C++代做(www.hslogic.com) © 2020 版权所有 All Rights Reserved.
  • Email:highspeed_logic@163.com 站长QQ: 1224848052

    专业代做/代写/承接、MATLAB、SIMULINK、FPGA项目、博士/硕士/本科毕业设计、课题设计、论文,毕业论文,Coursework、Eassy、Assignment